Logging into OMBEA

1.Go to http://ra.ombea/com

2. Enter room code

Jim Cardwell Northern Powergrid

Identifying the value for customers both now and in the future

Where are the near-term opportunities for storage to improve system resilience? (please answer in 10 words or less)

How may storage be used to maximise sustainability in the energy system? (please answer in 10 words or less)

The Knowledge Transfer Network

Driving Growth

Chris Bagley, Head of Infrastructure

Cross-sectoral opportunities for batteries

4th September 2019, Newcastle

UK Government Landscape

How it works

- Identifying needs and capabilities
- Expert advice & insights
- Events & Introductions
- Consortium building / Find partners
- Competition information / Reviewing proposals

The Faraday Battery Challenge

Part of the Industrial Strategy Challenge Fund

UK Research and Innovation UK Research and Innovation

INSTITUTION

ISCF Faraday Battery Challenge

IOvacion		_						
		Adv	£274 million (2017-2021) isory Group, Programme Board					
Challenge Director								
Researc	ch: £78m	&	Innovate: £88m	&	Scale: £108m			
 Application-inspi programme coord scale 	'Application-inspired' research programme coordinated at national scale		Innovation programme to support business-led collaborative R&D with co-investment from industry		Scale up programme to allow companies of all sizes to rapidly move new battery technologies to market			
 Creation of the Faraday Institution –responsible for coordination of research and training programmes 			Address technical challenges and build UK supply chain £38 million committed in Round 1		Develop manufacturing tools and methods for mass production Demonstrate production-rate reliability			
Four initial projects announced Jan 2018 (£42m) – Battery Degradation, Multi-scale Modelling, Recycling, Solid State Batteries			(2017) to Collaborative R&D and Feasibility Study projects– projects addressing range of areas from cell materials to pack integration and BMS to recycling		and quality CWLEP & WMG building open-access scale up facility: UK Battery Industrialisation Centre			
Five further proje announced Sep 2 generation Li-ion Electrode manufa generation Na-ion Li-i	ects (£55m total) 2019 for: Next cathodes; acturing; Next n batteries; Beyond FARADAY		 £22 million Round 2 to 12 CR&D and Feasibility Study projects announced in June 2018 Round 3 announced June 2019 with £23 million awarded to 25 CR&D and Feasibility Study projects. 		Construction of the building well underway. Open March 2020.			

The technical gaps

UK Research and Innovation

Creating a cross sector battery supply chain

UK Research and Innovation

Cross-sector Battery Systems (CSBS) Group

- The **CSBS** brings together a cross section of technology developers
- Convened by the Knowledge Transfer Network (KTN) to explore new links and opportunities in order to promote innovation and collaboration

www.ktn-uk.org

Innovate UK

Knowledge Transfer Network

Still growing ...

Innovate UK

Knowledge Transfer Network

Mission and goals

- Foster & develop the UK supply chain for battery systems
- Identify cross-sector common user needs for battery systems
- Influence battery research to meet the needs of non-automotive applications
- > Make it easier for UK battery systems users to find UK supply chain partners
- Enable better battery community networking in the UK
- Share knowledge and act as a hub for dissemination of group member activities
- Provide alternative markets for the UK battery systems sector

Some of the supply chain challenges across sectors as identified by CSBS

Fragmentation across the wide range of

sectors:

- Scale of battery systems (few hundred Wh to hundreds of kWh)
- Volume & timing unclear

Innovate UK

Knowledge Transfer Network

- Technical requirements different (& unclear)
- Market pull (/legislative push) inconsistent
 & difficult to gather

www.ktn-uk.org @KTNUK

Which of these applications are best suited for batteries in the short term?

A)	Rail
B)	Marine
C)	Aerospace
D)	Defence
E)	Buses
F)	Trucks
G)	Off-highway
H)	Stationary
I)	Medical

Innovate UK www.ktn-uk.org @KTNUK

Industrial

J)

Are there any missing?

(please answer in 10 words or less)

Knowledge Transfer Network

How can the CSBS group help?

eg. Networking events, online hub etc (please answer in 10 words or less)

Within the R&D community, do you think there is enough emphasis is placed on embedded energy

cost and environmental impact? How is this/or could this be fed back from the consumer?

Is there an established route to develop personal IP that is readily accessible to industry and how aware

are postgrads and postdocs of this? What would you like to see happen to facilitate IP development?

Pomegranate
Quince Plum
Strawberry Mango Papaya Jambul Pomelo Rambutan Maricot Watermelon
Blackberry Kiwi Urange Cantaloupe Persimmon
Nectarine Pineapple Raspberry Mulberry
Boysenberry Currant Banana Blueberry Cherry Jujube
Kumquat Coconut Bilberry Pear Blackcurrant Huckleberry Durian Damson Date Feijoa Passionfruit Dragonfruit Loquat Loquat Lychee Tangerine Knowledge Transfer Network www.ktn-uk.org @KTNUK Elderberry Blackcurrant Huckleberry

Inventors of carbon reducing technologies

TECHNOLOGY

PROCESS INTEGRATED ENERGY

STORAGE

ENERGY RECOVERY

Innovatium is a UK start-up that develops advanced technologies for evolving energy systems.

Energy is a precious commodity

New technology can overcome the barriers to an evolving energy system:

Consumer behaviour will determine the success of technology uptake

Recent History

- Formed in July 2017, registered office in Windsor.
- Awarded LAES DSR Energy Storage Feasibility Sep '17
- Opened office in Glasgow Dec '17
- Presented at Integrated Energy Storage at The Shard Dec '17
- Presented at the 1st UK-China Energy Storage Symposium in Beijing Jan '18
- Awarded Carbon Trust Industrial Energy Efficiency Competition Jul' 18
- Awarded BEIS UK-SK Smart Energy Funding Sep' 18
- Opened Maidenhead Project Office Oct '18
- Began Build of PRISMA LAES system Apr' 19

Some Partners

Design & Build Experience

275kw modular ~13mmscfd Pr = 2:1

Peak Reduction Integrating the Storage and Management of Air

Demand Response using Off Peak Power for Liquid Air Energy Technology

About Compressed Air

the 4th Utility

Compressed Air in industry is considered the "4th Utility" after electricity, gas & water

13% of *ALL* industrial electricity is used to make compressed air:

11,500 GWhr

equal to the all the energy generated by a nuclear power station each year

up to 60% savings

PRISMA improvements to a compressed air system can make a significant impact to energy and cost savings

Industrial Compressed Air

PRISMA General Arrangement

The PRISMA system is composed of 4 closely connected modules. Typical module dimensions are:

- Charge Air Module L1500mm x W1200mm x H1500mm, mass ~ 1000kg
- Integrated Liquid Air, Latent & Sensible Stores D1250mm x H3000mm, mass (filled) ~ 3000kg

PRISMA Advantage & Benefits

- Removes part load operation
 - Energy efficiency gains of up to 60%, reducing energy bills
- Corresponding reduction in carbon footprint
- Stores / discharges on-demand
 - Avoids 3hr daily peak 'red-rate' using off-peak energy
- Has at least 1.5 hours of air storage
 - Gives security of air supply and operational continuity

The Innovatium Way

Is your Project In Sync with Market Acceptance?

- Remove complexity reduce capital cost
- Reduce losses reduced operational cost
- Using existing technologies reduces time to market and cost
- Robust client business case acceptable performance
- Build a network of delivery partners reduces cost

Nonovatium

Thank you simon.branch@innovatium.co.uk 07593 302 667

SIEMENS

Ingenuity for life

Energy Storage Demonstrators: "learning by doing"

September 2019 Ian Wilkinson

© Siemens Corporate Technology 2019

siemens.com

Green Ammonia Energy Storage Demonstrator at the Rutherford Appleton Laboratory, UK

Siemens / GeoPura EV charging system at the Goodwood Festival of Speed 2019

© Siemens Corporate Technology 2019

Energy Storage Demonstrators: Learning by Doing

What is the role of storage in whole energy systems?

Rambutan Loquat Tamarillo Feijoa Pomegranate Lime Cloudberry Persimmon Kumquat Cherry Blueberry Cherimoya Mango Dragonfruit Date Juiube Melon Durian Currant Jambul ear Gooseberry Fig Apricot Jackfruit Kiwi Mulberry Satsuma Bilberry Nectarine Grape Strawberry Olive Cantaloupe Clementine Blackberry Raspberry Papaya Blackcurrant Raisin Coconut Passionfruit Boysenberry emon Cranberry **Physalis** Elderberry Guava Grapefruit Pomelo Lychee Honeydew Watermelon Damson Mandarine Huckleberry Peach Quince Tangerine Redcurrant Plum Page 35

© Siemens Corporate Technology 2019

The UK's heat and transportation sectors remain dominated by fossil energy (storage)

SIEMENS Ingenuity for life

Natural gas (non dailymetered): useful proxy for space and water heating (blue line)

Liquid transport fuels, comprising aviation, diesel and gasoline (grey line)

Electricity generation (red line)

Source: "Multi-vector energy diagram Great Britain - daily resolution", analysis by Dr. Grant Wilson, reproduced with permission.

Rapid variations in hourly (power) demand make decarbonising heat particularly challenging

Figure 2: Britain's local gas demand and electrical system supply - median and maximum demand weeks. The week dating 22nd to 28th January is the median demand week for the 2017–2018 heating season. The week dating 26th February to 5th March represents the maximum demand week of the 2017–2018 heating season.

Source: "Challenges for the decarbonisation of heat: local gas demand vs electricity supply Winter 2017/2018", UKERC Briefing by Dr Grant Wilson, Dr Ramsay Taylor and Dr Paul Rowley; see http://www.ukerc.ac.uk/publications/local-gas-demand-vs-electricity-supply.html

© Siemens Corporate Technology 2019

Page 37

A range of storage technologies are required to meet our (decarbonised) energy system needs

Storage time

© Siemens Corporate Technology 2019

Page 38

"It is difficult to conceive of a feasible whole-energy system that doesn't involve chemical energy vectors – and this is true also of low (net zero!) carbon systems."

Energy Storage Demonstrators: Learning by Doing

Are there existing opportunities that haven't been adequately explored?

Loquat Tamarillo Feijoa Pomegranate Lime Cloudberry Persimmon Kumquat Cherry Blueberry Cherimoya Mango Dragonfruit Date Juiube Melon Durian Currant Jambul 'ear Gooseberry Fig Apricot Jackfruit Kiwi Mulberry Satsuma Bilberry Nectarine Grape Strawberry Olive Cantaloupe Clementine Blackberry Raspberry Papaya Blackcurrant Raisin Coconut Passionfruit Boysenberry Cranberry emon Physalis Elderberry Guava Grapefruit Pomelo Lvchee Honeydew Watermelon Damson Mandarine Huckleberry Peach Quince Tangerine Redcurrant Plum Page 40

Making hydrogen power real in a very public way

"Achieving our emissions-reduction targets – in time – requires **innovation** in energy storage (not necessarily invention), i.e. repurposing mature technologies to rapidly achieve the required scale of deployment."

Energy Storage Demonstrators: Learning by Doing

What aspects of storage technologies should R&D be targeting to help commercialisation?

Tamarillo Loquat Feijoa Pomegranate Lime Cloudberry Persimmon Kumquat Cherry Blueberry Cherimoya Mango Dragonfruit Date Juiube Melon Durian Currant Jambul ear Gooseberry Fig Apricot Jackfruit Kiwi Mulberry Satsuma Bilberry Nectarine Grape Strawberry Olive Cantaloupe Clementine Blackberry Raspberry Papaya Blackcurrant Raisin Coconut Passionfruit Boysenberry emor Cranberry **Physalis** Elderberry Guava Grapefruit Pomelo Lychee Honeydew Watermelon Damson Mandarine Huckleberry Peach Quince Tangerine Redcurrant Plum Page 44

© Siemens Corporate Technology 2019

Arguably, R&D should focus on sectors other than power, and on technologies that can rapidly be deployed at scale

Source: BEIS (2019) 2018 UK Greenhouse Gas Emissions, Provisional Figures; BEIS (2019) 2017 UK Greenhouse Gas Emissions, Final Figures; CCC calculations.

Notes: The chart on the right-hand side shows changes in sectoral emissions between 2013 and 2018 for all sectors except for Agriculture, LULUCF, Waste and F-Gases which cover the period 2013-2017; buildings emissions in this chart are temperature-adjusted.

Source: "Reducing UK emissions, 2019 Progress Report to Parliament", UK Committee on Climate Change, July 2019

Demonstration systems can help speed-up the process of awareness, development and deployment

- Constructed at the Rutherford Appleton Laboratory, near Oxford, UK.
- Project supported by Innovate UK.

 Objective: to evaluate an allelectric synthesis and energy storage demonstration system based on Green Ammonia.

SIEMENS

"A bottom-up, "learning by doing" approach to decarbonisation, with a portfolio of system demonstrators, can speed-up the realisation of a feasible low-carbon whole energy system."

Thank you for your attention!

Dr. lan Wilkinson CT REE PXS

ian.wilkinson@siemens.com

Energy Storage Demonstration and Commercialisation – A Doosan Babcock Perspective

4th August 2019 Douglas Spalding

Our Change to Low Carbon Energy Technologies

In a decade of energy transition Doosan is investing in low carbon technologies and solutions

Doosan Babcock perspective of demonstration and commercialisation covers a range of technologies from new combustion systems to new energy systems and energy storage

VPP* - Virtual Power Plant CSP ** - Concentrated Solar Power

- Doosan Babcock's experience is that today's market applications need R&D targeting energy storage systems that,
 - Support system flexibility and can be delivered at larger scale (GWh) with fast response (<1ms) or smaller scale (sub MWh) but scalable/modular
 - Enhance whole energy system value (e.g. Power to X, with higher round trip efficiencies and energy densities)
 - Consider hybrid approaches that access more diverse revenue streams (e.g. large+small, different energy vectors - heat, power, hydrogen, oxygen)
 - That have digitalised solutions that can integrate and optimise system performance
 with storage across different energy vectors

Technology Demonstration and Commercialisation – Policy Barriers?

- Industrials can define market applications and undertake practical technology integration, but in today's disrupted energy markets finding viable storage solutions with academia can be problematic
- The challenge is wider than the policy barrier. Finding a commercialisation bridging strategy for the 'Chasm' is critical and involves,
 - Finding the right technology solution with academia (from scouting, identification to due diligence)
 - Identifying with academia the right technology requirements for the right application
 - Engaging an appropriate 'Chasm' institute (e.g. NCESI)
 - Accelerating academic and industrial engagement (e.g. KTPs, Open innovation challenges and 'Collabor-atories')
 - Defining policy requirements that make storage commercialisation and deployment viable

What types of new technologies (large, small, hybrid or digitalised) might deliver effective new systems with higher round trip efficiencies and greater viability?

How can academia help industry with 'Chasm' bridging strategies for more effective and viable storage solutions to overcome deployment barriers?

Rambutan Tamarillo Loquat Feijoa Pomegranate Lime Cloudberry Persimmon Kumquat Cherry Blueberry Cherimoya Mango Dragonfruit Date Juiube Melon Durian Currant Jambul ear Gooseberry Fig Jackfruit Apricot Kiwi Mulberry Satsuma Bilberry Nectarine Grape Strawberry Olive Cantaloupe Clementine Blackberry Raspberry Papaya Blackcurrant Raisin Coconut Passionfruit Boysenberry Cranberry Physalis Elderberry Guava Grapefruit Pomelo Lvchee Watermelon Honeydew Damson Mandarine Huckleberry Peach Quince Tangerine Redcurrant Plum

How are open innovation, crowd-sourcing or hackathons applied?

Rambutan Tamarillo Loquat Feijoa Pomegranate Lime Cloudberry Persimmon Kumquat Cherry Mango Dragonfruit Blueberry Cherimoya Date Jujube Melon Durian Currant Jambul Pear Jackfruit Gooseberry Fig Apricot Kiwi Mulberry Satsuma Bilberry Nectarine Grape Strawberry Olive d Cantaloupe Clementine Blackberry Raspberry Blackcurrant Papaya Raisin Coconut Banana Passionfruit Boysenberry emor Cranberry Physalis Elderberry Grapefruit Guava Pomelo Lychee Honeydew Watermelon Damson Mandarine Huckleberry Peach Quince Redcurrant Tangerine Plum

R&D Targeting -

• What types of new technologies (large, small, hybrid or digitalised) might deliver effective new systems with higher round trip efficiencies and greater viability?

Policy Barriers -

- How can academia help industry with 'Chasm' bridging strategies for more effective and viable storage solutions to overcome deployment barriers?
- · How are open innovation, crowd-sourcing or hackathons applied?
- More specifically, what policy/regulatory solutions are needed to,
 - Reward strategic storage for enhanced renewable production/security of supply across deregulated and transparent energy markets?
 (e.g. power, heat and transport)
 - Drive viable commercial propositions and demand? (e.g. rewarding green hydrogen storage for heat)
 - Deliver a paradigm shift in storage deployment if there is additional cost to the end user? (e.g. Power to X with FCEV, V2G)

Thank you

douglas.spalding@doosan.com

UKES2019 ENERGY STORAGE – UK GOVERNMENT POLICY

Nicky Herbert, Policy Advisor, Smart Energy Team BEIS

September 2019

OFFICIAL

Our energy system is undergoing fundamental change (Digitalisation, Decarbonisation, Decentralisation)

- Demand side response
- Electric vehicles/heat
- Big data & Al

System Benefits

Source: DECC Least regret flexibility project (2016)

*Cost savings in DECC Least-regret flexibility project reflects the benefits of all flexibility options, i.e. not just storage and DSR but also interconnection and flexible CCGTs

Policy Drivers

Smart Systems and Flexibility Plan

Smart Systems and Flexibility Plan: Key Facts

- Original plan published Jul 2017.
- Purpose was to enable the transition to a smarter/flexible system.
- 29 actions for Government, Ofgem and/or industry.
- Progress update published 16th October 2018, GGBW.
- Nine new actions for Government, Ofgem and industry.
- Implemented over half of the total 38 actions now.
- Remaining actions to be implemented by 2022.

Smart Systems and Flexibility Plan: Actions

Create a best in class regulatory framework for smart technologies, such as storage, by removing regulatory barriers to a level playing field.

Enable consumer participation in demand side response and incentivise and reward specific energy use. Comprised of four buildings blocks: smart meters, half-hourly settlement, smart appliances, smart tariffs.

Ensure that flexibility from storage and demand side response are fairly rewarded for the value they provide to the energy system. Primarily by reforming markets and enable revenue

Smart Systems and Flexibility Plan: Actions

Our aim is to **create a level playing field, so that energy storage can compete fairly** with other forms of flexibility and more traditional energy solutions

BEIS Energy Innovation Programme

- We use innovation support to help:
 - Drive down costs & optimise performance of low carbon technologies;
 - Bring new low carbon technologies to market or closer to commercialisation;
 - Support development of low carbon technology supply chains;
 - Support development of standards in low carbon technologies;
 - Leverage private sector R&D investment.

BEIS Smart Energy Innovation

Smart Energy Innovation Programme: (up to £70m budget)

www.gov.uk/guidance/funding-for-innovative-smart-energy-systems

Energy Storage Competitions (up to £20m)

Focused on cost reduction of larger scale technologies

Demand Side Response & Reduction Competitions (up to £20m)

Engaging domestic & commercial consumers with innovative DSR and demand reduction applications

Vehicle-to-Grid Competition (up to £18m + £12m OLEV)

Innovative technology and business approaches to harness vehicle-to-grid

Flexibility Markets Competitions (up to £4.6m)

Innovative approaches to value and trade flexibility at local levels

Smart Meter Application Competitions (up to £8m) Smart Meter Load Control and Smart Energy Savings Programmes

International Collaboration Competitions (up to £9m)

UK-South Korea - £3m (+£3m South Korea)

UK-Canada - £6m (+\$10m Canada)

Storage at Scale Competition - Overview

- £20m available supporting up to 3 large-scale, innovative demonstration projects of non-commercialised technologies at technology readiness levels of 6 or above.
- Projects could result in lower capital or operating costs to the traditional storage technologies, or improved capacity, sustainability and response rates at a comparable cost.
- Electricity energy storage projects with a minimum output power of 30 MW (or minimum capacity of 50 MWh) and power-to-x technologies with a target minimum input power of 5 MW.

Contacts:

For further information on the BEIS Smart Energy Innovation Programme, please contact:

Nicky Herbert: nicky.herbert@beis.gov.uk

Smart Energy Innovation Team: smart.innovation@beis.gov.uk